19 resultados para Petroleum refinery effluents

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The materials management function is always a major concern to the management of any organisation as high inventory and inefficient procurement processes have a significant effect on profitability. The problems multiply in the face of a very dynamic business environment, as is the present case in India. Hence, the existing system of materials planning, procurement processes and inventory management require reviewing with respect to the changed business environment. This study shows a radical improvement in materials procurement function of an Indian petroleum refinery through Business Process Reengineering (BPR) by analysing current process, identifying key issues, deriving paradigm shifts and developing reengineered processes through customer value analysis. BPR has been carried out on existing processes of 'material planning and procurement' and 'warehousing and surplus disposal'. The reengineered processes for the materials management function triggered several improvement projects that were identified by the group of executives who took part in the reengineering exercise. Those projects were implemented in an integrated framework, with the application of state of the art information technology tools and building partnership alliance among all stakeholders. Considerable improvements in overall functions of the organisation are observed, along with financial benefits. Copyright © 2006 Inderscience Enterprises Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Materials management function is always a major concern to the management of any industrial organisation as high inventory and an inefficient procurement process affect the profitability to a great extent. Problems multiply due to a very current business environment in India. Hence, existing materials planning and procurement processes and inventory management systems require a re-look with respect to a changing business environment. This study shows a radical improvement in materials management function of an Indian petroleum refinery through business process re-engineering (BPR) by analysing current processes, identifying key issues, deriving paradigm shifts and developing re-engineered processes through customer value analysis. BPR has been carried out on existing processes of “materials planning and procurement” and “warehousing and surplus disposal”. The re-engineered processes for materials management function trigger a few improvement projects that were identified by the group of executives who took part in the re-engineering exercise. Those projects were implemented in an integrated framework with the application of the state of art information technology tools.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The materials management function is always a major concern to management of any industrial organization, since high inventory and an inefficient procurement process significantly affect profitability. Problems multiply due to the current dynamic business environment in many countries. Hence, existing materials planning and procurement process and inventory management systems require a review. This article shows a radical improvement in the materials management function for an Indian petroleum refinery through business process re-engineering (BPR) by analyzing the current process, identifying key issues, deriving paradigm shifts and developing re-engineered processes through customer value analysis. BPR has been carried out on the existing processes of "material planning and procurement" and "warehousing and surplus disposal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes an integrated analytical framework for effective management of project risks using combined multiple criteria decision-making technique and decision tree analysis. First, a conceptual risk management model was developed through thorough literature review. The model was then applied through action research on a petroleum oil refinery construction project in the Central part of India in order to demonstrate its effectiveness. Oil refinery construction projects are risky because of technical complexity, resource unavailability, involvement of many stakeholders and strict environmental requirements. Although project risk management has been researched extensively, practical and easily adoptable framework is missing. In the proposed framework, risks are identified using cause and effect diagram, analysed using the analytic hierarchy process and responses are developed using the risk map. Additionally, decision tree analysis allows modelling various options for risk response development and optimises selection of risk mitigating strategy. The proposed risk management framework could be easily adopted and applied in any project and integrated with other project management knowledge areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Indian petroleum industry is passing through a very dynamic business environment due to the liberalisation of many government policies, vertical integration among organisations and the presence of multinational companies. This caused a competitive environment among the organisations in the Indian petroleum industry in the public sector. Effective project management for developing new infrastructures and maintaining the existing facilities has been considered one of the means for remaining competitive in this business environment. However, present project management practices suffer from many shortcomings, as time, cost and quality non-achievements are part and parcel of almost every project. This study focuses on identifying the issues in managing projects of the organisation in the Indian petroleum sector with the involvement of the executives in a workshop environment. This also suggests some remedial measures for resolving those issues through identifying critical success factors and enablers. The enablers not only resolve the present issues but also ensure superior performance. These are analysed in a quantitative framework to derive improvement measures in project management practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is both time-wasting and expensive. A risk-based model that reduces the amount of time spent on inspection has been presented. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests efficient design and operation philosophy, construction methodology and logical insurance plans. The risk-based model uses Analytic Hierarchy Process (AHP), a multiple attribute decision-making technique, to identify the factors that influence failure on specific segments and analyzes their effects by determining probability of risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost, and the cumulative effect of failure is determined through probability analysis. The technique does not totally eliminate subjectivity, but it is an improvement over the existing inspection method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petroleum pipelines are the nervous system of the oil industry, as this transports crude oil from sources to refineries and petroleum products from refineries to demand points. Therefore, the efficient operation of these pipelines determines the effectiveness of the entire business. Pipeline route selection plays a major role when designing an effective pipeline system, as the health of the pipeline depends on its terrain. The present practice of route selection for petroleum pipelines is governed by factors such as the shortest distance, constructability, minimal effects on the environment, and approachability. Although this reduces capital expenditure, it often proves to be uneconomical when life cycle costing is considered. This study presents a route selection model with the application of an Analytic Hierarchy Process (AHP), a multiple attribute decision making technique. AHP considers all the above factors along with the operability and maintainability factors interactively. This system has been demonstrated here through a case study of pipeline route selection, from an Indian perspective. A cost-benefit comparison of the shortest route (conventionally selected) and optimal route establishes the effectiveness of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an Inter-Disciplinary Higher Degree (IHD) thesis about Water Pollution Control in the Iron and Steel Industry. After examining the compositions, and various treatment methods, for the major effluent streams from a typical Integrated Iron and Steel works, it was decided to concentrate investigative work on the activated-sludge treatment of coke-oven effluents. A mathematical model of this process was developed in an attempt to provide a tool for plant management that would enable improved performance, and enhanced control of Works Units. The model differs from conventional models in that allowance is made for the presence of two genera of microorganisms, each of which utilises a particular type of substrate as its energy source. Allowance is also made for the inhibitive effect of phenol on thiocyanate biodegradation, and for the self-toxicity of the bacteria when present in a high substrate concentration environment. The enumeration of the kinetic characteristics of the two groups of micro-organisms was shown to be of major importance. Laboratory experiments were instigated in an attempt to determine accurate values of these coefficients. The use of the Suspended Solids concentration was found to be too insensitive a measure of viable active mass. Other measures were investigated, and Adenosine Triphosphate concentration was chosen as the most effective measure of bacterial populations. Using this measure, a model was developed for phenol biodegradation from experimental results which implicated the possibility of storage of substate prior to metabolism. A model for thiocyanate biodegradation was also developed, although the experimental results indicate that much work is still required in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is both time-wasting and expensive. A risk-based model that reduces the amount of time spent on inspection has been presented. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests an efficient design and operation philosophy, construction methodology, and logical insurance plans. The risk-based model uses the analytic hierarchy process (AHP), a multiple-attribute decision-making technique, to identify the factors that influence failure on specific segments and to analyze their effects by determining probability of risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost, and the cumulative effect of failure is determined through probability analysis. The technique does not totally eliminate subjectivity, but it is an improvement over the existing inspection method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional project management techniques are not always sufficient to ensure that schedule, cost and quality goals are met on large-scale construction projects. These jobs require complex planning, designing and implementation processes. The main reasons for a project's nonachievement in India's hydrocarbon processing industry are changes in scope and design, altered government policies and regulations, unforeseen inflation, under and/or improper estimation. Projects that are exposed to such an uncertain environment can be effectively managed by applying risk management throughout the project life cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Indian Petroleum Industry is passing through a very dynamic business environment due to liberalization. Effective project management for developing new infrastructures and maintaining the existing facilities has been considered as one of the means for remaining competitive but these practices suffer from many shortcomings, as time, cost and quality non-achievements are part and parcel of almost every project. This study focuses on identifying the specific causes of project failure by demonstrating first the characteristics of projects in Indian Petroleum industry and suggests some remedial measures for resolving these issues. The suggested project management model is integrated through information management system and demonstrated through a case study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projects exposed to an uncertain environment must be adapted to deal with the effective integration of various planning elements and the optimization of project parameters. Time, cost, and quality are the prime objectives of a project that need to be optimized to fulfill the owner's goal. In an uncertain environment, there exist many other conflicting objectives that may also need to be optimized. These objectives are characterized by varying degrees of conflict. Moreover, an uncertain environment also causes several changes in the project plan throughout its life, demanding that the project plan be totally flexible. Goal programming (GP), a multiple criteria decision making technique, offers a good solution for this project planning problem. There the planning problem is considered from the owner's perspective, which leads to classifying the project up to the activity level. GP is applied separately at each level, and the formulated models are integrated through information flow. The flexibility and adaptability of the models lies in the ease of updating the model parameters at the required level through changing priorities and/or constraints and transmitting the information to other levels. The hierarchical model automatically provides integration among various element of planning. The proposed methodology is applied in this paper to plan a petroleum pipeline construction project, and its effectiveness is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cross-country pipeline construction project is exposed to an uncertain environment due to its enormous size (physical, manpower requirement and financial value), complexity in design technology and involvement of external factors. These uncertainties can lead to several changes in project scope during the process of project execution. Unless the changes are properly controlled, the time, cost and quality goals of the project may never be achieved. A methodology is proposed for project control through risk analysis, contingency allocation and hierarchical planning models. Risk analysis is carried out through the analytic hierarchy process (AHP) due to the subjective nature of risks in construction projects. The results of risk analysis are used to determine the logical contingency for project control with the application of probability theory. Ultimate project control is carried out by hierarchical planning model which enables decision makers to take vital decisions during the changing environment of the construction period. Goal programming (GP), a multiple criteria decision-making technique, is proposed for model formulation because of its flexibility and priority-base structure. The project is planned hierarchically in three levels—project, work package and activity. GP is applied separately at each level. Decision variables of each model are different planning parameters of the project. In this study, models are formulated from the owner's perspective and its effectiveness in project control is demonstrated.